

Sparkflows.io allows you to Perform Data Science, Analytics & Engineering end-to-end easily and 10-30X faster. It comes with 300+ pre-built Processors.

# Input / Output

#### File Formats

| PROCESSOR NAME     | DESCRIPTION                                   |
|--------------------|-----------------------------------------------|
| Read CSV           | Reads CSV files                               |
| Save CSV           | Writes to CSV files                           |
| Read Parquet       | Reads Parquet files                           |
| Save Parquet       | Writes to Parquet files                       |
| Read Avro          | Reads Avro files                              |
| Save Avro          | Writes to Avro files                          |
| Read JSON          | Reads JSON files                              |
| Save JSON          | Saves to JSON files                           |
| PDF                | Reads PDF files                               |
| Dataset Structured | Reads data from different file format         |
| JDBC Connection    | Reads from relational database using JDBC     |
| URL Text File      | Reads text from given LIPI                    |
| Reader             | Redus text from given one                     |
| URL Single Record  | Poads in a single record ISON from given LIPI |
| JSON Reader        | Redus in a single record soort norr given one |
| JDBC Incremental   | Loads data from RDBMS to Hive                 |
| Load               |                                               |

#### Connectors

| PROCESSOR NAME        | DESCRIPTION                                    |
|-----------------------|------------------------------------------------|
| Read HIVE             | Reads from HIVE table                          |
| Save As HIVE Table    | Writes to HIVE table                           |
| Read Elastic Search   | Reads data from Elastic Search                 |
| Save Elastic Search   | Writes incoming Data Frame into Elastic Search |
| Read Cassandra        | Reads from Apache Cassandra                    |
| Savo Cassandra        | Writes incoming DataFrame into Apache          |
| Save Cassallula       | Cassandra                                      |
| Read Databricks Table | Reads from table from Databricks               |
| Save Databricks Table | Writes input data as table in Databricks       |
| Read From SnowFlake   | Reads From SnowFlake                           |
| Write To SnowFlake    | Writes To SnowFlake                            |
| ReadMongoDB           | Reads from MongoDB                             |
| SaveMongoDB           | Writes to MongoDB                              |
| ReadRedshift-AWS      | Reads data from Redshift-AWS using JDBC        |
| SaveRedshift-AWS      | Writes data to Redshift-AWS using JDBC         |

# Languages

#### Languages

| PROCESSOR NAME      | DESCRIPTION                             |
|---------------------|-----------------------------------------|
|                     |                                         |
| SQL                 | Runs given query on incoming dataframes |
| Scala               | Runs given scala code                   |
| Pipe Python         | Runs given Python code                  |
| Jython              | Runs given Jython code                  |
| PySpark             | Runs given PySpark code                 |
| Run HIVEQL          | Runs given HIVEQL                       |
| ScalaUDF            | Runs given Scala code for UDF           |
| Unix Shell Commands | Runs given shell command                |

# Machine Learning

### H2O

| PROCESSOR NAME       | DESCRIPTION                                                                                                                                                                                                                                    |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| H2ODRF               | Generates a forest of classification or regression trees, rather than a single classification or regression tree                                                                                                                               |
| H2O GBM              | Sequentially builds regression trees on all the<br>features of the dataset in a fully distributed way.<br>Each tree is built in parallel                                                                                                       |
| H2O GLM              | Estimates regression models for outcomes following exponential distributions                                                                                                                                                                   |
| H2O GLRM             | General, parallelized optimization algorithm that<br>applies to a variety of loss and regularization<br>functions                                                                                                                              |
| H20 Isolation Forest | Isolates observations by randomly selecting a<br>feature and then randomly selecting a split<br>value between the maximum and minimum<br>values of that selected feature. This split<br>depends on how long it takes to separate the<br>points |
| H2O KMeans           | Clustering is a form of unsupervised learning<br>that tries to find structures in the data without<br>using any labels or target values                                                                                                        |
| H2O Word2 Vec        | Takes a text corpus as an input and produces the word vectors as output                                                                                                                                                                        |
| H2O XGBoost          | Implements a process called boosting to yield accurate models                                                                                                                                                                                  |

### Scikit Learn

| PROCESSOR NAME                           | DESCRIPTION                                                                                                                                                                                                              |
|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sklearn Gradient Boo<br>sting Classifier | Allows for the optimization of arbitrary differentiable<br>loss functions. In each stage n_classes_ regression<br>trees are fit on the negative <i>gradient</i> of the<br>binomial or multinomial deviance loss function |
| SklearnGradientBoosting<br>Regression    | Allows for the optimization of arbitrary differentiable<br>loss functions. In each stage a <i>regression</i> tree is fit<br>on the negative <i>gradient</i> of the given loss function                                   |
| SkLearnRidgeRegression                   | Solves a regression model where the loss function<br>is the linear least squares function and<br>regularization is given by the I2-norm. Also known<br>as Ridge Regression or Tikhonov regularization                    |
| SklearnPredict                           | Predict node takes in a Data Frame and Model and makes predictions                                                                                                                                                       |

### Spark ML

| PROCESSOR<br>NAME           | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GBTClassifier               | Gradient-Boosted Trees (GBTs) is a learning algorithm<br>for classification. It supports binary labels, as well as<br>both continuous and categorical features. Note:<br>Multiclass labels are not currently supported                                                                                                                                           |
| LogisticRegression          | Performs binary classification                                                                                                                                                                                                                                                                                                                                   |
| NaiveBayes                  | Creates a NaiveBayes model. Supports both<br>Multinomial NB which can handle finitely supported<br>discrete data. For example, by converting documents<br>into TF-IDF vectors, it can be used for document<br>classification. By making every vector a binary (0/1)<br>data, it can also be used as Bernoulli NB.The input<br>feature values must be nonnegative |
| Random Forest               | Supports both binary and multiclass labels, as well as                                                                                                                                                                                                                                                                                                           |
| Classifier                  | both continuous and categorical features                                                                                                                                                                                                                                                                                                                         |
| KMeans                      | K-means clustering with support for k-means.<br>Initialization proposed by Bahmani et al                                                                                                                                                                                                                                                                         |
| LDA                         | LDA is given a collection of documents as input data,<br>via the features Col parameter. Each document is<br>specified as a Vector of length - vocabSize, where<br>each entry is the count for the corresponding term<br>(word) in the document                                                                                                                  |
| GaussianMixture             | Performs expectation maximization for multivariate<br>Gaussian Mixture Models (GMMs). A GMM represents<br>a composite distribution of independent Gaussian<br>distributions with associated mixing weights<br>specifying each's contribution to the composite                                                                                                    |
| GBT Regression              | Supports both continuous and categorical features                                                                                                                                                                                                                                                                                                                |
| Linear Regression           | Linear regression models and model summaries is similar to the logistic regression case                                                                                                                                                                                                                                                                          |
| Random Forest<br>Regression | Supports both continuous and categorical features                                                                                                                                                                                                                                                                                                                |

### XGBoost

| PROCESSOR                      | DESCRIPTION                                                                                                                                         |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| XGBoost Classifier             | Provides a parallel tree boosting (also known as                                                                                                    |
| XGBoost Regressor              | GBD1, GBM)<br>Contains low-level routines for training, prediction,                                                                                 |
| XGBoost SageMaker<br>Estimator | The algorithm used for regression and classification<br>tasks on tabular datasets. It implements a technique<br>known as gradient boosting on trees |

## **Time Series**

### Algorithms

### Feature Engineering

| PROCESSOR NAME   | DESCRIPTION                                                                                                                                                                                     |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Facebook Prophet | Prophet is a procedure for forecasting time<br>series data based on an additive model<br>where non-linear trends are fit with yearly,<br>weekly, and daily seasonality, plus holiday<br>effects |
| ARIMA            | Class of model that captures a suite of<br>different standard temporal structures in time<br>series data                                                                                        |

| PROCESSOR NAME        | DESCRIPTION                                        |
|-----------------------|----------------------------------------------------|
| MovingWindowFunctions | Calculates the moving values of selected functions |
|                       | for the field(input column)                        |
| DateToAge             | Converts a date-column into columns of age (both   |
|                       | in years and in days)                              |

# **Data Preparation**

#### Filter

| PROCESSOR NAME            | DESCRIPTION                                                              |
|---------------------------|--------------------------------------------------------------------------|
| Column Filter             | Creates a new dataFrame containing selected column                       |
| Row Filter                | Creates a new dataFrame containing only rows satisfying given condition  |
| Drop Columns              | Creates a new dataFrame by deleting column specified                     |
| Filter By Date Range      | Filters rows with given Date range                                       |
| Filter By Number<br>Range | Filters rows with given Number range                                     |
| Filter By String Length   | Filters rows with given String Length                                    |
| Row Filter By Index       | Creates a new Data Frame containing only rows satisfying given condition |

## Data Cleaning

| PROCESSOR NAME                  | DESCRIPTION                                                 |
|---------------------------------|-------------------------------------------------------------|
| Data Wrangling                  | Creates a new dataframe by applying each rule specified     |
| Dedup                           | It provides entity resolution or data matching              |
| Drop Duplicate Rows             | Removes Duplicate Rows                                      |
| Drop Rows With Null             | Creates a new dataFrame by dropping Null value in Rows      |
| Find And Replace Using<br>Regex | Finds and replaces the text in a column containing a string |
| Find And Replace                | Finds and replaces the text in a column                     |
| Using Regex Multiple            | containing a string in multiple columns                     |
| Imputing With Constant          | Imputes missing value with Constant value                   |
| Imputing With Mean<br>Value     | Imputes the Continuous variable by mean                     |
| Imputing With Median            | Imputes with median                                         |
| Imputing With Mode<br>Value     | Imputes with a most frequently observed value               |
| Remove Duplicate Rows           | Removes Duplicate rows                                      |
| Remove Unwanted<br>Characters   | Removes Unwanted Characters                                 |
| Remove Unwanted                 | Removes Unwanted Characters from multiple                   |
| Characters Multiple             | fields                                                      |

### Data Validation

| PROCESSOR NAME              | DESCRIPTION                          |
|-----------------------------|--------------------------------------|
| Validation                  | Validates Column value with function |
| Compare Datasets            | Validates input Datasets             |
| Validate Address            | Validates USA address                |
| Validate Fields<br>Advanced | Validates multiple Node              |

# **Data Quality**

### Data Profiling

| PROCESSOR NAME              | DESCRIPTION                                                                                                   |
|-----------------------------|---------------------------------------------------------------------------------------------------------------|
| Correlation                 | Calculates Correlation between two series of data                                                             |
| Columns Cardinality         | Calculates the count of records for each unique value for the column specified                                |
| Cross Tab                   | Categorical vs Categorical                                                                                    |
| Distinct Values In Column   | Distinct Values In Column                                                                                     |
| Flag Outlier                | Flags the outlier based on a selected column using box and whisker technology                                 |
| Graph Month Distribution    | Finds the distribution of months from Date Values                                                             |
| Graph Week Day Distribution | Finds the distribution of Week Day from Date Values                                                           |
| Graph Year Distribution     | Finds the distribution of Year from Date Values                                                               |
| HistoGram                   | Computes Histogram of the data using a number of bins evenly spaced between maximum and minimum of the column |
| Null Values In Column       | Finds Number of Null Values in the selected column                                                            |
| Skewness And Kurtosis       | Skewness And Kurtosis                                                                                         |
| Summary Statistics          | Computes summary statistics                                                                                   |

## Visualization

#### Charts

| PROCESSOR NAME        | DESCRIPTION                                                                       |
|-----------------------|-----------------------------------------------------------------------------------|
| Graph Values          | Plots the Line chart, Bar Chart, Pie Chart, Scatter Chart Graph                   |
| Graph Region Geo      | Displays value on Map                                                             |
| Graph Group By Column | Groups the data by the given column and plots the number of records in each group |

### Streaming

#### Streaming

| PROCESSOR NAME                  | DESCRIPTION                                            |
|---------------------------------|--------------------------------------------------------|
| Streaming Kafka                 | Reads in streaming text from topics in Apache Kafka    |
| Streaming Socket<br>Text Stream | Reads in streaming text from a socket                  |
| Streaming Text                  | Monitors a specified directory for new files. It keeps |
| File Stream                     | reading in any new files created in the directory.     |

### Structured Streaming

| PROCESSOR NAME                       | DESCRIPTION                                                                                              |
|--------------------------------------|----------------------------------------------------------------------------------------------------------|
| Structured Streaming<br>Console Sink | Outputs the Data Frame to the console                                                                    |
| Structured<br>Streaming CSV          | Monitors a specified directory for new files. It keeps reading in any new files created in the directory |
| Structured Streaming<br>File Sink    | Writes the Data Frame to files with Structured Streaming                                                 |
| Structured Streaming<br>Hive Sink    | Saves the streaming data into a HIVE Table                                                               |
| Structured Streaming<br>HiveSink2    | Saves the streaming data into an Apache HIVE Table                                                       |
| Structured Streaming<br>Kafka        | Reads in streaming text from topics in Apache Kafka                                                      |
| Structured Streaming<br>Kinesis      | Reads in streaming text from Kinesis stream                                                              |
| Structured Streaming<br>Socket       | Reads in streaming text from a socket                                                                    |

Visit our website sparkflows.io to get started today!